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Abstract
Homogeneous, isotropic mediums characterized by relative permittivity scalars
ε = εR + iεI (εR, εI ∈ R) and relative permeability scalars µ = µR + iµI

(µR,µI ∈ R) are well known to support the propagation of plane waves with
negative phase velocity (NPV), provided that both εR < 0 and µR < 0. We
demonstrate that mediums which do not support NPV propagation when viewed
at rest (e.g., mediums with εR > 0 and µR > 0), can support NPV propagation
when they are viewed in a reference frame which is uniformly translated at
a sufficiently high velocity. Representative numerical examples are used to
explore the constitutive parameter regimes which support NPV propagation
under the uniform-velocity condition.

PACS numbers: 03.30.+p, 03.50.De

1. Introduction

In the late 1960s, Veselago speculated upon the properties of a homogeneous, lossless,
isotropic dielectric-magnetic medium with relative permittivity scalar ε < 0 and relative
permeability scalar µ < 0 [1, 2]. A range of exotic and potentially useful phenomenons—
such as negative refraction, negative Doppler shift and inverse C̆erenkov radiation—were
predicted for mediums of this type. After a lapse of 30 years, interest in these types of
mediums was rekindled, following experimental evidence of their existence in the form of
microwave metamaterials [3, 4]. Subsequent experimental [5, 6] and theoretical [7–9] studies
have confirmed Veselago’s original thesis; see [10] for an up-to-date review.

A central characteristic of mediums with ε < 0 and µ < 0 is that they support the
propagation of plane waves with the phase-velocity vector directed opposite to the time-
averaged Poynting vector. Accordingly, we describe such mediums as negative phase-velocity
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(NPV) mediums, in contrast to conventional positive phase-velocity (PPV) mediums in which
the phase velocity has the same direction as the power flow.

Although ε < 0 and µ < 0 is a sufficient condition for NPV propagation, it is not
a necessary condition. In fact, for dissipative isotropic dielectric–magnetic mediums with
complex-valued ε = εR + iεI (εR, εI ∈ R) and complex-valued µ = µR + iµI (µR,µI ∈ R),
it is sufficient for only one of εR or µR to be negative for NPV propagation to develop [11]. The
restrictions on the signs of the constitutive parameters may be further reduced by considering
anisotropic mediums [12–14].

The following question arises naturally in the present context: Can a medium which is of
the PPV type when viewed in a stationary reference frame be of the NPV type when viewed in
a reference frame moving at constant velocity? A glimpse of the answer to this question can be
found in many textbook treatments of electromagnetic fields in uniformly moving mediums;
see [15], for example. But in those treatments, it is assumed that the moving substance has
purely instantaneous response and is therefore nondissipative; such mediums are not causal.
We, however, address the question comprehensively for dissipative mediums in the following
sections.

A note on notation: ε0 and µ0 are the permittivity and the permeability of free space (i.e.
vacuum), respectively; c0 = (ε0µ0)

−1/2 is the speed of light in free space; ω is the angular
frequency; v̂ is a unit vector co-directional with v; the unit dyadic is I and r denotes the spatial
coordinate vector.

2. Analysis

2.1. Minkowski constitutive relations

Suppose an inertial reference frame �′ moves with a constant velocity v = vv̂ with respect to
an inertial reference frame �. By virtue of the Lorentz covariance of the Maxwell postulates,
the electromagnetic field phasors in frame � are related as

∇ × E − iωB = 0

∇ × H + iωD = 0

}
(1)

and the electromagnetic field phasors in frame �′ are related as

∇′ × E′ − iω′B′ = 0

∇′ × H′ + iω′D′ = 0

}
. (2)

The relationships between the primed and unprimed phasors in (1) and (2) are provided via
the Lorentz transformation as [15]

E′ = (E · v̂)v̂ +
1√

1 − β2
[( I − v̂v̂) · E + v × B] (3)

B′ = (B · v̂)v̂ +
1√

1 − β2

[(
I − v̂v̂

)
· B − v × E

c2
0

]
(4)

H′ = (H · v̂)v̂ +
1√

1 − β2
[( I − v̂v̂) · H − v × D] (5)

D′ = (D · v̂)v̂ +
1√

1 − β2

[(
I − v̂v̂

)
· D +

v × H

c2
0

]
(6)

where β = v/c0.
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Let us now consider a homogeneous, isotropic, dielectric-magnetic medium which is
stationary in the reference frame �′; its constitutive relations may be expressed as

D′ = ε0εE′ = ε0(εR + iεI )E′

B′ = µ0µB′ = µ0(µR + iµI )B′.

}
(7)

Substituting the transformation equations (3)–(6) into (7) leads to the Minkowski constitutive
relations of the dielectric–magnetic medium in the reference frame � [15], namely

D = ε0εα · E +
mv̂ × H

c0

B = −mv̂ × E
c0

+ µ0µα · H


 (8)

wherein

α = αI + (1 − α)v̂v̂ (9)

α = 1 − β2

1 − εµβ2
(10)

m = β
εµ − 1

1 − εµβ2
. (11)

On setting v = 0, the constitutive relations (8) for � degenerate to those of �′ specified in (7).

2.2. Planewave propagation

We turn now to the propagation of plane waves with field phasors

E = E0 exp(ik · r)

H = E0 exp(ik · r)

}
(12)

in the medium described by the Minkowski constitutive relations (8). A brief outline of the
theory is provided here; for further details the reader is referred elsewhere [15–17].

Combining (12) with the Maxwell curl postulates (1), and utilizing the constitutive
relations (8) to eliminate D and B, we find that planewave solutions satisfy the
relation [15]

W · E0 = 0 (13)

where

W =
[
ω2ε0εµ0µ det( α ) −

(
k +

ωm

c0
v̂
)

· α ·
(

k +
ωm

c0
v̂
)]

I

+

(
k +

ωm

c0
v̂
) (

k +
ωm

c0
v̂
)

· α. (14)

Without loss of generality, the wave propagation vector k can be taken along the z axis, while
the velocity vector lies in the xz plane; i.e.

k = kûz = (kR + ikI )ûz

v̂ = ûx sin θ + ûz cos θ

}
(15)

where kR and kI are the real and imaginary parts of the wavenumber k. Accordingly, the phase
velocity is given by

vph = ω

kR

ûz. (16)
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The dispersion relation

det(W ) = 0 (17)

yields the wavenumbers as

k = ω

c0

−βξ cos θ ±
√

1 + ξ(1 − β2 cos2 θ)

1 − ξβ2 cos2 θ
(18)

with

ξ = εµ − 1

1 − β2
. (19)

By selecting the sign of the square root term in (18) to be such that kI > 0, we ensure that the
positive z axis is the direction of wave attenuation. Observe that in spite of the Minkowski
constitutive relations indicating anisotropy when v �= 0, the medium is unirefringent.

The orthogonality condition(
k + m

ω

c0
v̂
)

· α · E0 = 0 (20)

emerges by combining the dispersion relation (17) with (13). In consideration of (20),
eigenvector solutions to (13) are provided by linear combinations of the orthogonal pair

e1 = k × v̂ (21)

e2 = α−1 ·
[(

k + m
ω

c0
v̂
)

× e1

]
. (22)

Thus, the electric field phasor E can be set down as [15]

E = (C1 e1 + C2 e2) exp(ikz) (23)

wherein C1 and C2 are arbitrary constants. The corresponding magnetic field phasor

H =
[

C1

ωµ0µ
e2 − ωε0εC2 e1

]
exp(ikz) (24)

is provided by the Maxwell curl postulates (1) together with (23) and the constitutive
relations (8).

2.3. Poynting vector

An expression of the time-averaged Poynting vector can be derived from the definition

P = 1
2 Re(E × H∗) (25)

wherein Re(·) denotes the real part and the asterisk denotes the complex conjugate. For lossless
dielectric–magnetic mediums (i.e. those mediums characterized by εI = 0 and µI = 0), we
have [15]

P =
(|C1|2 + ω2ε0εRµ0µR|C2|2

)
(k × v̂)2

2ωµ0µR

[
k +

ξ (ω − k · v)

c2
0

v
]

(26)

but explicit representations for P are not readily tractable for dissipative mediums. Our
particular interest lies in the component of P parallel to the wavevector, namely Pz = ûz · P,
for dissipative mediums. When C2 = 0, we find

Pz ∼ Pz1 exp(−2kI z) (27)
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Figure 1. For ε = 3 + i2δ and µ = 2 + iδ, the real (kR) and imaginary (kI ) parts of the wavenumber
k (normalized with respect to ω/c0), along with the associated values of Pz1 and Pz2, plotted against
θ (in degrees) and β for δ = 0.5.

with

Pz1 =
{

ω

c0
(
k2
R + k2

I

) [
(kRεR + kI εI )

(
µ2

R + µ2
I

) − (kRµR − kIµI )β
2
]

− [
εR

(
µ2

R + µ2
I

) − µR

]
β cos θ

}
(28)

while

Pz ∼ Pz2 exp(−2kI z) (29)

with

Pz2 =
{

ω

c0
(
k2
R + k2

I

) [
(kRµR + kIµI )

(
ε2
R + ε2

I

) − (kRεR − kI εI )β
2
]

− [
µR

(
ε2
R + ε2

I

) − εR

]
β cos θ

}
(30)

holds when C1 = 0. In view of (23) and (24), it is clear that Pz > 0 provided that both Pz1 > 0
and Pz2 > 0.



5702 T G Mackay and A Lakhtakia

0 0.2 0.4 0.6 0.8 1
β

1.2

1.4

1.6

1.8

2

2.2

2.4

kR

θ=30°

0 0.2 0.4 0.6 0.8 1
β

0

0.2

0.4

0.6

0.8

1

1.2

1.4

kI

θ=30°

0 0.2 0.4 0.6 0.8 1
β

0

1

2

3

4

5

6

Pz1

θ=30°

0 0.2 0.4 0.6 0.8 1
β

0

2

4

6

8

10

Pz2

θ=30°

0 0.2 0.4 0.6 0.8 1
β

-30

-20

-10

0

10

20

30

kR

θ=150°

0 0.2 0.4 0.6 0.8 1
β

0

10

20

30

40

50

60

70

kI

θ=150°

0 0.2 0.4 0.6 0.8 1
β

0

1

2

3

4

5

6

Pz1

θ=150°

0 0.2 0.4 0.6 0.8 1
β

0

2

4

6

8

10

Pz2

θ=150°

Figure 2. For ε = 3 + i2δ and µ = 2 + iδ, the real (kR) and imaginary (kI ) parts of the wavenumber
k (normalized with respect to ω/c0), along with the associated values of Pz1 and Pz2, plotted against
β for θ = 30◦ and 150◦. Key: the dotted, broken dotted and solid lines denote δ = 0.1, 0.5 and 1,
respectively.

3. Numerical results

Let us explore planewave propagation for three scenarios, viz

(a) εR > 0 and µR > 0;
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Figure 3. For ε = 3 + i2δ and µ = 2 + iδ, the real (kR) and imaginary (kI ) parts of the wavenumber
k (normalized with respect to ω/c0), along with the associated values of Pz1 and Pz2, plotted against
θ (in degrees) for β = 0.3 and 0.9. Key: as in figure 2.

(b) εR > 0 and µR < 0; and

(c) εR < 0 and µR < 0
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Figure 4. As figure 1 but with ε = 3 + i2δ and µ = −2 + iδ.

by means of representative numerical examples. Note that the case {εR < 0, µR > 0} is
complementary to (b) and therefore need not be investigated here. The principle of causality
imposes the constraints εI > 0 and µI > 0 on actual materials [18].

Temporal dispersion is accommodated through the implicit dependences of ε and µ upon
ω. The results presented here are independent of whether the dielectric–magnetic medium
exhibits normal temporal dispersion or anomalous temporal dispersion. Accordingly, in
interpreting results, we consider the relative orientations of energy flow associated with a
plane wave (as provided by the Poynting vector) and the phase velocity, but group velocity
(which is the velocity of the peak of a wavepacket) is not discussed [15]. The effects of spatial
dispersion are also not considered here.

3.1. εR > 0 and µR > 0

For ε = 3 + i2δ and µ = 2 + iδ with δ = 0.5, the real (kR) and imaginary (kI ) parts of the
wavenumber k, together with the associated values of Pz1 and Pz2, are plotted in figure 1 as
functions of θ and β. The quantities kR, kI , Pz1 and Pz2 are >0 across much of the θβ plane.
That is, the phase-velocity vector is co-parallel with power flow for most values of θ and β.
However, when θ and β are both large, kR becomes negative while kI , Pz1 and Pz2 remain
positive in figure 1. NPV propagation is thereby signified.
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Figure 5. As figure 2 but with ε = 3 + i2δ and µ = −2 + iδ.

The transition from positive to negative phase velocity is considered in further detail in
figure 2 where kR, kI , Pz1 and Pz2 are plotted against β for three different values of dissipation
parameter δ. At θ = π/6, PPV behaviour is observed for all values of β ∈ (0, 1). On the other
hand, when θ = 5π/6, kR becomes negative—indicating that the phase velocity is directed
opposite to the power flow—for large values of β. The transition from kR > 0 to kR < 0
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Figure 6. As figure 3 but with ε = 3 + i2δ and µ = −2 + iδ.

coincides with a local maximum in kI . This maximum is particularly pronounced at low
values of δ.

Similar behaviour is observed when kR, kI , Pz1 and Pz2 are viewed as functions of θ ,
as revealed in figure 3. For β = 0.3, only positive values of kR are observed for all
angles θ ∈ (0, π). When β = 0.9, transitions from positive to negative values of kR ,
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Figure 7. As figure 1 but with ε = −3 + i2δ and µ = −2 + iδ.

and accompanying maximum values of kI , are seen at large angles θ for δ = 0.1, 0.5 and 1.
As in figure 2, the positive-to-negative transition of kR and the maximum of kI are most
noticeable for δ = 0.1.

3.2. εR > 0 and µR < 0

The θ and β dependences of kR, kI , Pz1 and Pz2 are shown in figure 4 for ε = 3 + i2δ and
µ = −2 + iδ with δ = 0.5. As in figure 1, the PPV regime extends over much of the θβ plane,
but a region of NPV behaviour—which extends over a larger area of the θβ plane than does
the corresponding region in figure 1—is observed where θ and β have their largest values.

The kR transition from positive to negative values is revealed in greater detail in figure 5
where kR, kI , Pz1 and Pz2 are plotted as functions of β for δ = 0.1, 0.5 and 1. At
θ = π/6, kR > 0 and PPV propagation is inferred for all values of β ∈ (0, 1). However, for
θ = 5π/6, we see that kR < 0 for all but the very smallest values of β. Furthermore, unlike
the situation depicted in figures 1–3 for εR > 0 and µR > 0, here the transition from kR > 0
to kR < 0 is not accompanied by a local maximum in kI . Indeed, as β → 1, we see that the
values of kI become increasingly small whereas the values of |kR| become increasingly large.

The quantities kR, kI , Pz1 and Pz2 are considered as functions of θ in figure 6 for
δ = 0.1, 0.5 and 1. At β = 0.3, the real part (kR) of the wavenumber k is positive at
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Figure 8. As figure 2 but with ε = −3 + i2δ and µ = −2 + iδ.

low values of θ and becomes negative as θ increases beyond approximately 2π/3. The
transition from kR > 0 to kR < 0 coincides with a modest local maximum in kI . At β = 0.9,
the observed transition from kR > 0 to kR < 0 is rather more abrupt, as is the accompanying
local maximum in kI .



Negative phase velocity in a uniformly moving, homogeneous, isotropic, dielectric-magnetic medium 5709

0 25 50 75 100 125 150 175
θ

-8

-6

-4

-2

0

kR

β=0.3

0 25 50 75 100 125 150 175
θ

0

1

2

3

4

5

kI

β=0.3

0 25 50 75 100 125 150 175
θ

4.5

4.75

5

5.25

5.5

5.75

6

Pz1

β=0.3

0 25 50 75 100 125 150 175
θ

7

7.5

8

8.5

9

9.5

10

Pz2

β=0.3

0 25 50 75 100 125 150 175
θ

-30

-20

-10

0

10

20

30

kR

β=0.9

0 25 50 75 100 125 150 175
θ

0

10

20

30

40

50

60

kI

β=0.9

0 25 50 75 100 125 150 175
θ

1

1.25

1.5

1.75

2

2.25

2.5

Pz1

β=0.9

0 25 50 75 100 125 150 175
θ

1.5

2

2.5

3

3.5

4

Pz2

β=0.9

Figure 9. As figure 3 but with ε = −3 + i2δ and µ = −2 + iδ.

3.3. εR < 0 and µR < 0

When both εR and µR are negative, we definitely expect to find NPV propagation in the
co-moving reference frame (i.e. β = 0) [10]. The quantities kR, kI , Pz1 and Pz2 are plotted as
functions of θ and β in figure 7 for ε = −3 + i2δ and µ = −2 + iδ with δ = 0.5. The region of
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negative kR (with kI , Pz1 and Pz2 all positive) extends over much of the θβ plane. However,
regions of positive kR are also observed—at high values of β.

More detailed information is provided in figure 8 where kR, kI , Pz1 and Pz2 are plotted
against β for δ = 0.1, 0.5 and 1. At θ = π/6, kR < 0 for low values of β but becomes positive
as β increases. The transition from kR < 0 to kR > 0 coincides with a local maximum in kI ,
with the positive-to-negative transition of kR and the maximum of kI being particularly abrupt
for δ = 0.1. Thus, the NPV propagation which develops at low values of β (including β = 0)
is replaced by PPV propagation at sufficiently large values of β.

Further insights may be gained by considering the plots of kR, kI , Pz1 and Pz2 as functions
of θ in figure 9, for δ = 0.1, 0.5 and 1. At β = 0.3, the NPV regime is observed to prevail for
all values of θ ∈ (0, π), with the exception of very small values of θ for δ = 1. On the other
hand, at β = 0.9, kR > 0 at low values of θ but undergoes a transition to become kR < 0 as θ

increases. The positive-to-negative transition of kR is accompanied by a sharp local maximum
in kI , with the local maximum being particularly sharp for δ = 0.1.

4. Conclusions

That isotropic homogeneous mediums characterized by εR < 0 and µR < 0 support NPV
propagation has become firmly established in recent years [2, 10]. Furthermore, it was recently
noted that NPV behaviour may develop if only one of εR or µR is less than zero [11]. It is
demonstrated here that the {εR, µR} regime giving rise to NPV behaviour may be extended
considerably by considering planewave propagation in a uniformly moving reference frame.

In section 1 we asked the following question: Can a medium which is of the PPV type
when viewed in a stationary reference frame be of the NPV type when viewed in a reference
frame moving at constant velocity? ‘Yes’ is the answer. In particular,

(a) a stationary PPV medium with εR > 0 and µR > 0 may be viewed as a NPV medium
provided it is moving at a sufficiently large uniform velocity;

(b) a stationary PPV medium with εR > 0 and µR < 0 (or εR < 0 and µR > 0) may be
viewed as a NPV medium provided it is moving at a sufficiently large uniform velocity;

(c) a stationary NPV medium with εR < 0 and µR < 0 may be viewed as a PPV medium
provided it is moving at a sufficiently large uniform velocity.

These findings have significant scientific and technogical implications for the realization
of NPV propagation: to date, NPV propagation has been observed experimentally only in
microwave metamaterials comprising conducting wire/ring inclusions, embedded periodically
on printed circuit boards [3, 4]. It is demonstrated here that NPV propagation is achievable
in homogeneous dielectric-magnetic mediums, when observed in a reference frame which is
translated at a sufficiently high velocity. We expect these results to be significant for space
telemetry, especially for remotely probing the surfaces of planets from space stations.
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